SEMANTIC GRAPH BASED TERM EXPANSION FOR SENTENCE-LEVEL SENTIMENT ANALYSIS
نویسندگان
چکیده
منابع مشابه
Semantic Lexicon Expansion for Concept-Based Aspect-Aware Sentiment Analysis
We have developed a prototype for sentiment analysis that is able to identify aspects of an entity being reviewed, along with the sentiment polarity associated to those aspects. Our approach relies on a core ontology of the task, augmented by a workbench for bootstrapping, expanding and maintaining semantic assets that are useful for a number of text analytics tasks. The workbench has the abili...
متن کاملSemi-supervised latent variable models for sentence-level sentiment analysis
We derive two variants of a semi-supervised model for fine-grained sentiment analysis. Both models leverage abundant natural supervision in the form of review ratings, as well as a small amount of manually crafted sentence labels, to learn sentence-level sentiment classifiers. The proposed model is a fusion of a fully supervised structured conditional model and its partially supervised counterp...
متن کاملUsing sentence-level classifiers for cross-domain sentiment analysis
....................................................................................................................................... i Significance to defence and security ................................................................................................ i Résumé .......................................................................................................................
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملLong Short-term Memory Network over Rhetorical Structure Theory for Sentence-level Sentiment Analysis
Using deep learning models to solve sentiment analysis of sentences is still a challenging task. Long short-term memory (LSTM) network solves the gradient disappeared problem existed in recurrent neural network (RNN), but LSTM structure is linear chain-structure that can’t capture text structure information. Afterwards, Tree-LSTM is proposed, which uses LSTM forget gate to skip sub-trees that h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computing
سال: 2020
ISSN: 2312-5381,1727-6209
DOI: 10.47839/ijc.19.4.2000